Мониторинг анестезиологических газов

Показания

Мониторинг анестезиологических газов обеспечивает ценную информацию при общей анестезии.

Противопоказания

Противопоказаний не существует, хотя высокая стоимость ограничивает проведение данного мониторинга.

Методики

К наиболее распространенным методикам анализа анестезиологических газов относятся масс-спектрометрия, рамановская спектроскопия и абсорбция инфракрасных лучей. Из бокового порта в сегменте дыхательного контура образцы газовой смеси под воздействием вакуумной помпы через длинную трубку диаметром 1 мм поступают внутрь масс-спектрометра,

где и осуществляется их анализ. Из финансовых соображений один масс-спектрометр обычно обслуживает несколько операционных, при этом клапан-направитель автоматически регулирует забор образцов в операционных. Образец газа ионизируется электронным лучом и затем проходит через магнитное поле. Ионы с высоким соотношением масса: заряд в магнитном поле отклоняются слабее и следуют по кривой большего радиуса. Спектр отклонения ионов представляет собой основу для анализа. Газы с идентичной молекулярной массой (CO2 и N2O) дифференцируются по отклонению в магнитном поле их фрагментов, образующихся при бомбардировке образца электронным лучом.

Рамановская спектроскопия

идентифицирует газы и измеряет их концентрацию путем анализа интенсивности световой эмиссии, которая происходит при возвращении молекул газа к исходному (невозбужденному) энергетическому состоянию после воздействия лазерным лучом.

Инфракрасные анализаторы

основаны на различных методиках, принципиально сходных с капнографией. Для измерения абсорбции инфракрасных лучей используют акустические датчики, параинфракрасные оптические датчики и оптические датчики спектра, удаленного от инфракрасного. Молекулы кислорода не абсорбируют инфракрасные лучи, поэтому их концентрация не может быть измерена с помощью данной технологии.

Клинические особенности

Большинство масс-спектрометров обслуживают несколько операционных, хотя существуют модели, предназначенные только для одной.

Следовательно, образцы газа, как правило, анализируются по очереди для каждой операционной, и результаты обновляются каждые 1-2 мин. Новые модели непрерывно измеряют концентрацию CO2 с помощью инфракрасного анализатора и, таким образом, имеют преимущества перед стандартным капнографом. Помимо содержания углекислого газа анализаторы способны измерять концентрацию азота, кислорода, закиси азота, галотана, энфлюрана, изофлюрана, десфлюрана и севофлюрана. Увеличение концентрации азота в конце выдоха свидетельствует о воздушной эмболии или поступлении воздуха извне в дыхательный контур. Измерение концентрации ингаляционных анестетиков позволяет предотвратить передозировку при нарушении работы испарителя или при непреднамеренном заполнении испарителя "чужим" анестетиком. Например, непреднамеренное заполнение энфлюранового испарителя галотаном может привести к передозировке, потому что давление насыщенного пара галотана выше и, кроме того, галотан мощнее энфлюрана.

Один из недостатков масс-спектрометрии обусловлен тем, что постоянная аспирация образцов газа осложняет измерение потребления кислорода при анестезии по закрытому (реверсивному) контуру. Если дыхательный объем невелик или же если используется бесклапанный дыхательный контур Мэйплсона, то при высокой скорости аспирации из дыхательного контура может насасываться свежая дыхательная смесь, что приводит к занижению концентрации газов в выдыхаемой смеси. В перспективе возможности масс-спектрометра могут расшириться до неинвазивного измерения легочных объемов и сердечного выброса.

Результаты масс-спектрометрии и рамановской спектроскопии в равной степени точны, несмотря на наличие принципиальных отличий в технологии. Преимущества рамановской спектроскопии заключаются в более быстром получении результатов, в возможности самокалибрования и в длительном сроке службы. В настоящее время появилась модель рамановского спектроскопа, предназначенная для обслуживания одной операционной (а не нескольких).

Перейти на страницу: 1 2

Мое меню