Объем ИВЛ

Таким образом, волюметрия, позволяя осуществлять контроль объема ИВЛ, строго говоря, не гарантирует ее адекватность. Единственным методом, создающим возможность точного соответствия объема ИВЛ потребностям организма, является поминутный контроль за напряжением углекислого газа в крови. Для этого необходима постоянная регистрация (например, с помощью внутрисосудистого датчика или чрескожного исследования, что пока практически недоступно в широкой практике) либо частое лабораторное определение газов артериальной крови (что также не всегда реально). Можно измерять напряжение углекислоты в альвеолярном воздухе (которое приблизительно равно рссь артериальной крови) с помощью капнографа. При использовании всех других методов контроля объема ИВЛ анестезиолог должен помнить о возможности отклонения ее величины от истинных потребностей организма.

Частота дыхательных движений во время ИВЛ является произвольно устанавливаемой величиной. Выбор ее связан с зависимостью, существующей между ЧД и другими показателями.

На первом месте по значению стоит влияние ЧД на размеры альвеолярной вентиляции: при том же минутном объеме чем больше частота, тем меньше альвеолярная вентиляция и наоборот. Это положение иллюстрирует простой пример. Зависимость между МОД и МАВ может быть выражена формулами, приведенными выше. Оценка физиологического значения этих формул позволяет установить несколько важных закономерностей.

Пусть МОД составляет 8 л, ОМП — 150 мл, а ЧД меняется. Тогда при ЧД 8 в минуту МАВ = 8 л — 1,2 л = 6,8 л, при ЧД 16 в минуту МАВ = 8 л — 2,4 л = = 5,6 л, при ЧД 32 в минуту МАВ == 8 л — 4,8 л = 3,2 л. Итак, простой расчет показывает, что при том же МОД увеличение ЧД приводит к резкому снижению АВ и, следовательно, эффективности вентиляции. С другой стороны, при ней смененном ДО учащение дыхания будет закономерно сопровождаться увеличением МАВ. Наконец, уменьшение ДО без соответствующего возрастания ЧД неизбежно снижает эффективность вентиляции.

При сближении величины ДО и ОМП в сочетании с обычными величинами ЧД альвеолярная вентиляция будет стремиться к нулю. Это правило теряет гное значение при ВЧ ИВЛ, при которой, как предполагают, фронтальное движение газа заменяется коническим и происходит усиление турбулентности, способствующее их смешиванию. Кроме того, при ВЧ ИВЛ, особенно осцилляторным методом, важную роль приобретает возрастание диффузионного газообмена. В условиях ИВЛ значение зависимости между ЧД и МАВ (т.е. эффективностью вентиляции) возрастает в связи с некоторым увеличением общего ОМП за счет соответствующих «мертвых» объемов наркозных аппаратов и аппаратов ИВЛ. Становится понятным, почему прилагают столько усилий, чтобы максимально уменьшить ОМП наркозной и дыхательной аппаратуры, особенно используемой у детей.

И еще одно следствие уже известных читателю закономерностей. Чем эффективнее вентиляция при прочих равных условиях, тем лучше газообмен и тем скорее происходит уравнивание концентрации вдыхаемого анестетика с его содержанием в альвеолярном газе. При ОМП 150 мл каждый ДО (допустим, 500 мл) на 350 мл обновляет альвеолярный газ. Объем последнего составляет так называемую функциональную остаточную емкость (ФОБ), равную в среднем 2—3,5 л. Следовательно, в нашем примере полная замена альвеолярного газа происходит примерно через 6—10 вдохов. Чем выше ЧД и ДО, тем скорее наступают замена альвеолярного газа и повышение концентрации анестетика, приближающейся к вдыхаемой. Понимание этого факта особенно важно в периоде индукции ингаляционными анестетиками. Это положение в равной степени справедливо и для фазы выведения из ингаляционной анестезии: увеличение ЧД и ДО способствует ускорению процесса элиминации анестетика из организма.

ЧД связана также с величиной так называемой мгновенной объемной скорости газотока, создаваемой в дыхательных путях больного при сжатии мешка или респиратором: чем меньше ЧД, тем выше должна быть объемная скорость газотока, и наоборот.

При спонтанном дыхании и ИВЛ движение газа через дыхательные пути может быть выражено синусоидальной кривой. Во время вдоха газоток очень быстро нарастает от нуля до максимальной величины (пик), вновь падая затем ю нуля к концу фазы. Аналогично подъем и спад газотока происходят во время выдоха. Следовательно, максимальную скорость газоток имеет в ограниченное время как во время вдоха, так и во время выдоха.

Перейти на страницу: 1 2 3 4

Мое меню